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____ Motivation Problem Statement Conclusio
Emerging tields like Virtual Reality depend on Our goal is to observe different initial guesses, hyperparameters and regularization techniques to Before Optimization After Optimization

ERSP

3D r.nes.he.s to rgpresgnt objects and scenes, better understand what variables have the most influence on the quality of 3D reconstructions.
making it increasingly important to accurately

from 2D images was previously done with Tests and RESUltS

Multi-View Stereo, which generated point Using a renderer from a previous work, “Large Steps in Inverse Rendering of Geometry” [2], we run
clouds — a set of points in 3D space. However, controlled experiments to independently study factors such as different loss functions, coarse to fine ‘ _
point clouds are generally grainy. optimizations, Laplacian smoothing, and shape and size of initial meshes. Based on our results, we found the following

Exploring Different Hyperparameters Exploring Different Regularization Techniques factors result in higher quality reconstructions.
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Figure 1: Sparse Point Cloud, Dense Point Cloud, and Mesh
Representations of Stanford Bunny. [1]

Proper
Positioning

Recent efforts use more detailed triangular
meshes, which are generated using Inverse
Rendering algorithms. With optimization, these
reconstructions can become more accurate.
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Future works can use our conclusions to

Background
improve reconstructions in Robotics and

Inverse Rendering begins with an initial guess | . . . . Autonomous Driving.
and a set of 2D images. The initial mesh is L2 loss is accurate, others may result in artifacts.  Coarse to fine and large lambda captures detail. -

changed using differentiable rendering to the
match the target images. Property: Size Smoothness Same Genus Rotation Position

lteration O | , Target: Medium Cube Bunny Duck Floatie Duck Floatie 2 Hole Torus
- Iteration 40 [teration 167 A
(Initial Guess) | .
. Figure 3: Children’s Toys Represented with Texture and Geometry. [3]
Reconstruction . .
. . : Furthermore, optimizations in texture can be
of FirstInitial | = . )
SRR SR found to accurately represent the surface, color,
teration 1000 L and light reflection of objects.
lteration 298 | > RS E RS
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Figure 2: Inverse Rendering
from Sphere to Suzanne
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